TDC-I

BOTANY HONOURS (PAPER-II)

GROUP-A (120)

1.	Who is known as the f	ather of microbiology		
	a. Ivanoski	b. Nageli	c. Koch	d. Leeuwenhoek
2.	Which of the following	g is a rod shaped bacteria	3	
	a. bacillus	b. coccus	c. vibrio	d. spirillum
3.	Spherical bacterium is	called		
	a. bacillus	b. coccus	c. vibrio	d. spirillum
4.	Shape of vibrio bacter	ia is		
	a. rod	b. comma	c. sphere	d. spiral
5.	Bacteria without flage	lla are called		
	a. atrichous	b. monotrichous	c. amphitrichc	ous d. peritrichous
6.	Bacteria with a single	flagellum present at one	end of the cell a	re called
	a. atrichous	b. monotrichous	c. amphitrichc	ous d. peritrichous
7.	Bacteria with one flag	ellum at both the ends a	re called	
	a. lophotrichous	b. monotrichous	c. amphitrichc	ous d. peritrichous
8.	Which of the following	g is non-polar flagellatior	in bacteria	
	a. monotrichous	b. lophotrichous	c. amphitrichc	ous d. peritrichous
9.	Bacteria with two or n	nore flagella at one or bo	oth the ends of th	ne cell are called
	a. monotrichous	b. lophotrichous	c. amphitrichc	ous d. peritrihous
10.	Bacteria with flagella	evenly distributed throug	sh out the surfac	e of the cell are called
	a. atrichous b. lop	hotrichous c. am	phitrichous	d. peritrichous
11.	Bacterial flagellum is r	nade up of the protein		
	a. tubulin	b. pilin	c. flagellin	d. actin
12.	Spherical bacteria occ	urring in irregular group	are called	
	a. staphylococci	b. sarcinae c. stre	eptococci	d. monococci

13.	Spherical bacteria occurring in cuboidal arrangement of cells are called			ed
	a. staphylococci	b. sarcinae c. stro	eptococci d. r	nonococci
14.	Extrachromosomal ci	rcular DNA molecules pr	esent in bacterial cells	are called
	a. introns	b. exons	c. plasmids	d. nucleoid
15.	Bacterial ribosomes a	re		
	a. 100 S	b. 90 S	c. 80 S	d. 70 S
16.	The larger subunit of b	pacterial ribosome is		
	a. 70 S	b. 60 S	c. 50 S	d. 30 S
17.	The smaller subunit of	bacterial ribosome is		
	a. 70 S	b. 60 S	c. 50 S	d. 30 S
18.	Which of the followin	g flagellation type in bac	teria is polar	
	a. amphitrichous	b. lophotrichous	c. monotrichous	d. all
19.	Which of the following	g two stains are used in (Gram staining of bacte	ria
	a. crystal violet and ic	odine	b. crystal violet and	bromine
	c. crystal violet and sa	afranin	d. safranin and iodi	ne
20.	Surface appendages ir	n bacteria helping in atta	chment are called	
	a. pili	b. flagella	c. cilia	d. spines
21.	Which of the following	g is an example of green	sulphur bacteria	
	a. Chlorobium	b. Thiospirillum	c. Thiobacillus	d. Pseudomonas
22.	Which of the following	g is an example of purple	e sulphur bacteria	
	a. Chlorobium	b. Thiospirillum	c. Thiobacillus	d. Pseudomonas
23.	Which of the followin	ց is an example of sulphւ	ır bacteria	
	a. Thiobacillus	b. Thiospirillum	c. Nitrosomonas	d. Pseudomonas
24.	Which of the followin	g is an example of hydro	gen bacteria	
	a. Thiobacillus	b. Thiospirillum	c. Nitrosomonas	d. Pseudomonas
25.	During the nitrification	n process, conversion of	ammonia to nitrite is o	carried out by
	a. Nitrosomonas	b. Nitrobacter	c. Pseudomonas	d. <i>Beggiatoa</i>

26.	During the nitrification process, conversion of nitrite to nitrate is carried out by				
	a. Nitrosomonas	b. Nitrobacter	c. Pseudomonas	d. <i>Beggiatoa</i>	
27.	Which of the following	g is an example of iron b	acteria		
	a. Ferrobacillus	b. Thiospirillum	c. Nitrosomonas	d. Pseudomonas	
28.	Lactobacillus is an exa	mple of			
	a. photosynthetic ba	cteria	b. chemosynthetic ba	cteria	
	c. parasitic bacteria		d. saprophytic bacteri	а	
29.	Bacteria may be				
	i. photosynthetic autotrophic ii. Chemosynthetic autotrophic				
	iii. saprophytic hetero	trophs iv. Pa	rasitic heterotrophs		
	a. i, ii	b. ii, iii	c. i, ii, iii	d. i, ii, iii, iv	
30.	Which of the following animals	g is responsible for the p	roduction of biogas from	the dung ruminant	
	a. archaebacteria	b. cyanobacteria	c. eubacteria	d. mycoplasmas	
31.	The survival of archae	bacteria in extreme cond	ditions is due to different	structure of	
	a. cell wall	b. cell membrane	c. ribosome d. non	e	
32.	Methanogens are arch	naebacteria which prefer			
	a. marshy areas	b. salty areas	c. hot springs	d. all	
33.	Archaebacteria knowr	as halophiles prefer to	grown in		
	a. marshy area	b. salty area	c. hot spring	d. all	
34.	Thermoacidophiles pr	efer to grow in			
	a. marshy area	b. salty area	c. hot spring	d. all	
35.	The major difference l	oetween archaebacteria	and other bacteria is		
	a. difference in cell wa	Ill structure b. diff	erence in cell membrane	e structure	
	c. difference in riboso	me structure d. nor	ne		
36.	Which of the following	g is also called blue gree	n algae		
	a. eubacteria	b. archaebacteria	c. mycoplasmas	d. none	

37.	Genetic recombination in bacteria involves			
	a. transformation	b. transduction	c. conjugation	d. all
38.	Cyanobacteria have cl	nlorophyll		
	a. a	b. b	c. a&b	d. a&c
39.	Blue green algae ofter	n form in	water bodies	
	a. bloom, polluted	b. bloom, clean	c. scum, polluted	d. scum, clean
40.	Some cyanobacteria c	an fix atmospheric nitro	ogen in specialized cells	called
	a. horomongia	b. oogonia	c. akinetes	d. heterocysts
41.	Which of the following	g can fix atmospheric ni	trogen	
	a. <i>Nostoc</i> b. <i>An</i>	abaena c. Rh	<i>izobium</i> d. all	
42.	Nostoc is a			
	a. unicellular blue gree	en alga b. fila	amentous blue green alg	ga
	c. spherical bacterium	d. sp	iral bacterium	
43.	Which of the bacteria	are most abundant in r	ature	
	a. photosynthetic auto	otrophs b. ch	emosynthetic autotroph	IS
	c. heterotrophic bacte	ria d. no	ne	
44.	Some heterotrophic b	acteria fix nitrogen in		
	a. legume roots	b. legume fruits	c. cereal roots	d. cereal stems
45.	Which of the following	g is responsible for mak	ing curd	
	a. bacteria	b. my	ycoplasmas	
	c. chemosynthetic bac	teria d. he	terotrophic bacteria	
46.	Which of the genetic r between two bacteria		sm in bacteria requires	physical contact
	a. transformation	b. transduction	c. conjugation	d. transfection
47.	Which of the genetic r two bacterial cells	ecombination mechani	sm does not require phy	ysical contact between
	i. transformation	ii. transducti	on iii. C	Conjugation
	a. i b. ii	c. i, ii	d. ii, iii	

48.	Which genetic recomb	pination mechanism in	bacteria is mediated by v	irus
	a. transformation	b. transduction	c. conjugation	d. transfection
49.	The arrangement in wl	hich flagella are distrib	uted all around the bacter	ial cell is known as:
	a. amphitrichous	b. peritrichous	c. monotrichous	d. lophotrichous
50.	The culture media con	taining heat labile cons	stituents are best sterilized	l by
	a. UV-irradiation c. dry heat at 180°C fo	or 30 min	b. filtration using me d. autoclaving at 15 p	
51.	The phenomenon of co	onjugation in bacteria v	was first discovered by:	
	a. Lederberg and Tatuc. Luria and Delbruck		Vatson and Crick Zinder and Lederberg	
52.	If a bacterial cell divid much time will it take		and it takes one hour to fil	l a small cup, how
	a. 29 minutes	b. 30 minutes	c. 39 minutes	d. 59 minutes
53.	Time during which bac	cterial population doub	les in number is called	
	a. incubation time	b. generation time	c. culture time	d. division time
54.	A process that remove called	or kills all forms of lif	e present in specific objec	et or substances is
	a. radiation	b. autoclave	c. sterilization	d. tyndallisation
55.	Anabaena, a N ₂ fixing a. <i>Marsilea</i>	blue green algae is ass b. <i>Salvinia</i>	ociated with c. <i>Azolla</i>	d. Lycopodium
56.	The conversion of nitro	ogen to ammonia or ni	trogenous compounds is c	called
	a. nitrogen assimilation		itrogen fixation lenitrification	
57.	All of the following ar	e fee living nitrogen fi	xers except	
	a. Rhizobium	b. Azotobacter	c. Rhodospirillum	d. Clostridium
58.	Leghaemoglobin creat	es		
	a. anaerobic condition	for optimum activity	of nitrogenise	
	b. aerobic condition for	or optimum activity of	nitrogenise	
	c. suitable environmen	nt for nodule formation	1	
	d. increase concentrat	ion of nitrogen		
59.	The process of convers	sion of soil NO3 to nitro	ogen is called	

a. nitrifica	tion b.	renitrification	c. denitrification	d.	nitrogenation
--------------	---------	-----------------	--------------------	----	---------------

60.	The root nodule of legume has a pink pigment which is called			
	a. haemoglobin	b. superglobin	c. leghaemoglobin d.	nitrohaemoglobin
61.	Leghaemoglobin has at	ffinity for		
	a. nitrogen	b. nitrate	c. ammonia	d. oxygen
62.	Which of the following root nodules	N2 fixer is involved i	in symbiotic association wi	ith legumes forming
	a. Rhizobium	b. Azotobacter	c. Phodospirillum	d. Clostridium
63.	Which of the following	blue green alga is ass	sociated with Azolla	
	a. Nostoc	b. Anabaena	c. Spirulina	d. Rivularia
64.	Symbiotic N2 fixing cy	vanobacteria are presen	nt in all of the following ex	ccept
	a. Anthoceros	b. Azolla	c. Cycas	d. Gnetum
65.	Splitting of dinitrogen by	molecule (N2) into fre	ee nitrogen atom during N2	fixation is carried out
	a. hydrogenase	b. nitrase	c. dinitrogenase	d. nitrogenase
66.	Which of the following	bacteria is used in the	e making of the famous roc	equefort cheese
	a. Streptococcus lactic	us	b. Bacillus subtilis	
	c. Lactobacillus helvit	icus	d. Xanthomonas prun	nii
67.	Virus contains			
	a. either DNA or RNA	b. both DNA	A and RNA	
	c. ssDNA with ssRNA	d. dsDNA v	with dsRNA	
68.	The protein coat surrou	inding the nucleic acid	l of a virus is	
	a. spike	b. capsid	c. Proteinoid	c. Prion
69.	The bacterial cells havi	ng F factor in the chro	omosomes were termed as	
	a. Hfr	b. F⁻	c. Hbr	d. F^+
70.	What does not happen	during bacterial conju	gation	
	a. F factor passes from	F+ cells to F- cells w	ithout replication	
	b. F factor passes from	F+ celles to F- cells a	after replication	
	c. F- cell is converted	into F+ cells		
	d. the two conjugating cells are held together through pili			

/1.	Genetic material of 1-	pliages is		
	a. ssDNA	b. dsDNA	c. ssRNA	d. dsRNA
72.	Which virus was first o	observed		
	a. hepatitis virus	b. TMV c. caulif	lower mossaic virus	d. bcteriophage
73.	Cyanophage is a virus	that attacks		
	a. bacteria b.	mycoplasma c.	blue green algae	d. Plants
74.	Which of the following	g is a biofertlizer		
	a. Rhizobium	b. Azotobacter	c. Anabaena	d. all
75.	Transformation in bac	teria was discovered by		
	a. Tatum	b. Griffith	c. Stahl d. Leo	lerberg
76.	Transduction in bacter	ia was discovered by		
	a. Tatum	b. Griffith	c. Stahl d. Zin	der & Lederberg
77.	A free living bacterium	n capable of fixing nitrog	gen is	
	a. Pseudomonas	b. Rhizobium	c. Azotobacter	d. Streptococcus
78.	Which of the following	g bacteria causes botulisr	n	
	a. Clostridium	b. Bacillus	c. Pseudomonas	d. Staphylococcus
79.	Which of the following	g is used for sterilization		
	a. centrifuge	b. autoclave	c. shaker	d. distiller
80.	Typhoid is caused by			
	a. Salmonella	b. Pseudomonas	c. Clostridium	d. Botrytis
81.	The credit of discovery	y of virus goes to		
	a. Ivanovsky	b. Tatum	c. Beadle	d. Luria
82.	Who showed that virus	s can be crystallized		
	a. Stanley	b. Luria	c. Mayer	d. Beijerinck
83.	What is not true about	viruses		
	a. viruses are nucleop	rotein in nature		
	b. viruses contain both	n DNA and RNA		
	c. viruses contain eith	er DNA or RNA		
	d. virus reproduce by	using the metabolic mac	hinery of the host cell	

71.

Genetic material of T-phages is

84.	The protein coat that encloses the viral nucleic acid is called				
	a. capsid	b. capsule	c. plasmid	d. plasmalemma	
85.	What is true about viru	ses			
	a. viruses may have double stranded or single stranded DNA				
	b. viruses may have double stranded or single stranded RNA				
	c. viruses have a prote	in coat called capsid			
	d. all				
86.	Which of the following	s is a rod-like virus			
	a. TMV	b. adenovirus	c. poliovirus	d. rhinovirus	
87.	Which of the following	s is a polyhederal virus			
	a. adenovirus	b. poliovirus	c. rhinovirus	d. all	
88.	The bacteria was first o	of all cultured by			
	a. Lister	b. Louis Pasteur	c. Robert Koch	d. None of these	
89.	Bacteria were discover	ed by			
	a. Linnaeus	b. Pasteur	c. Robert Koch	d. Leeuwenhoek	
90.	The term bacterium wa	as given by			
	a. Pasteur	b. Lister c. Lee	uwenhoek d. Ehr	enberg	
91.	Germ theory of disease	e was given by			
	a. Robert Koch	b. Theobald Smith	c. Lister d. Ehr	enberg	
92.	Theory of spontaneous	generation was disprov	ved by		
	a. Robert Koch	b. Emile Roux	c. Lister d. Lou	is Pasteur	
93.	Pasteurization is a tech	inique of			
	a. isolation	b. sterilization	c. fermentation	d. preservation	
94.	Cryptogram is the seco	nd part of the name of a			
	a. alga	b. fungus	c. bacterium	d. virus	
95.	The coded information	about the virus is contai	ned in		
	a. spikogram	b. cryptogram	c. erythrogram	d. virogram	
96.	Protein subunits makin	g the coat of a virus are o	called		
	a. monomers	b. capsomeres	c. viroids	d. spikes	

97.	Viruses which attack y	veast cells are called		
	a. bacteriophage	b. actinophage	c. cyanophage	d. zymophage
98.	Viruses which attack b	blue green algae are ca	lled	
	a. bacteriophage	b. actinophage	c. cyanophage	d. zymophage
99.	T-phages are			
	a. plant viruses	b. animal viruses	c. bacteriophages	d. cyanophages
100.	T-phages are so called		I BU	
100.			1	
	a. they are T-shaped		they have tail	
	c. they are temperate	phages d.	none	
101.	Viruses which show ly	vsogenic cycle are call	ed	
	a. lytic phages	b. temperate phage	s c. prophages	d. late phages
102.	Phage DNA integrated	l with the bacterial chr	omosome in the lysogenic	cycle is called
	a. prephage	b. postphage	c. prophage	d. isophage
103.	TMV consist of			
	a. protein and dsDNA	A	b. protein and ssDN/	A
	c. protein and ssRNA		d. protein and dsRN.	A
104.	Who made the statem	nent "contagium vivun	n fluidum"	
	a. Pasteur	b. Beijerinck	c. Ivanosky	d. Koch
105.	Potato dextrose agar i	medium (PDA) is used	for culture of	
	a. fungi	b. algae	c. bacteria	d. virus
106.	Culture medium is ste	rilized by use of		
	a. oven	b. incubator	c. autoclave	d. fumigation
107.	Toxin produced by din	oflagellates		
	a. saxitoxin	b. aflatoxin	d. ochre toxin	d. Fusaric acid
108.	Environmental factors	responsible for the sp	poilage of agricultural proc	ducts:
	a. temperature	b. humidity	c. nutrient level	d. All
109.	Mycotoxins are poisor	nous metabolites proc	luced by	
	a. algae	b. fungi	c. bacteria	d. viruses
110.	Which Aspergillus spe	cies is responsible for	producing aflatoxin	
	a. Aspergillus flavus	b. /	Aspergillus ochraceus	
	c. Aspergillus niger	С.	none	

111.	Aflatoxin contaminatio	on mainly affects	
	a. liver	b. lung	c. heart d. kidney
112.	Turkey X disease is cau	used by	
	a. algal toxin	b. aflatoxin	c. virus d. bacterium
113.	Algal toxin is produced	l by	
	a. Gonyaulax	b. Gymnodinium	c. <i>Pyrodinium</i> d. all
114.	Paralytic shellfish pois	oning is caused by toxin	produced by
	a. algae b. fun	gi c. bacteria	d. protozoans
115.	Algal toxin produced b	by dinoflagellates usually	y affects
	a. nerves	b. liver c. hea	art d. kidney
116.	Aflatoxin is produced l	ру:	
	a. Aspergillus sp.	b. <i>Fusarium</i> sp.	c. Pithomyces sp. d. Penicillium sp.
117.	Which of the following	s is not a fungal toxin	
	a. saxitoxin	b. fusaric acid	c. wild fire toxin d. lycomarasmin
118.	Potato dextrose agar r	nedium is	
	a. synthetic medium	b. ser	mi-synthetic medium
	c. natural medium	d. noi	ne
119.	Genetic material of TN	1V is	
	a. dsDNA	b. ssDNA	c. dsRNA d. ssRNA
120.	Which of the following	g is algal toxin	
	a. brevetoxin	b. saxitoxin	c. microcystin d. all
GROU	IP-B (180)		
121.	Study of causes of plan	nt disease is called	
	a. epidemiology	b. pathogenesis	c. etiology d. toxicology
122.	The sequence of progr	ess in disease developm	nent is known as
	a. etiology	b. pathogenesis	c. epidemiology d. toxixology
123.	The study of factors af	fecting the outbreak of a	an infectious disease is called
	a. etiology	b. pathogenesis	c. epidemiology d. toxicology
124.	Who is known as fathe	er of plant pathology in I	ndia
	a. E.J.Butler	b. J.F.Dastur	c. K.C.Mehta d. R.S.Singh

125.	Plant diseases confined to a particular region are called			
	a. endemic	b. epiphytotic	c. sporadic	d. systemic
126.	Plant diseases coverin	g a large area and popul	ation of plants are callec	I
	a. endemic	b. epiphytotic	c. sporadic	d. systemic
127.		aracterized by the form and swollen branches is	ation of closely grouped called	clusters of
	a. witche's broom	b. anthracnose	c. mildew	d. blotch
128.	A disease symptom wi	ith sunken black lesions	is called	
	a. mildew	b. anthracnose	c. blotch	d. rust
129.	A disease symptom give	ving a burnt appearance	is called	
	a. blight	b. smut	c. mildew	d. scab
130.	A disease symptom in	which the seedlings top	ple and die	
	a. die-back	b. wilt	c. damping off	d. bunt
131.		which the pathogen is v the host surface is calle	isible as white, grey, bro d	wnish or purple
	a. mildew	b. rust	c. smut	d.scab
132.	A disease symptom w	hich appears in the form	of rough, crust-like lesic	ons on host surface
	a. smut	b. mildew	c. scab	d. rust
133.	A disease symptom ap definite margin is calle		hich are usually deep se	ated and with a
	a. canker	b. gall	c. bunt	d. scab
134.	A disease symptom ap outgrowths of plant o		lobose, elongated or irre	gular enlarged
	a. bunt	b. scab	c. smut	d. gall/tumours
135.	A disease symptom give	ving the appearance of s	ooty or charcoal like pov	vdery mass is called
	a. smut	b. rust	c. scab	d. mildew
136.		pearing as white, red, b e the epidermis is called	rown, yellow, orange, or	black blisters or
	a. smut	b. bunt	c. scab	d. rust

137.	Death of plant tissue due to infection is called			
	a. necrosis	b. chlorosis	c. hypertrophy	d. hyperplasia
138.	The swollen tip of the	germ tube of as spore is	called	
	a. appresorium	b. haustorium	c. sclerotium	d. rhizomorph
139.	Which of the following	g chemical weapon is use	ed by pathogens to infec	t the host
	a. enzymes	b. toxins	c. growth regulators	d. all
140.	Which of the following	g toxins is known as wild	fire toxin	
	a. tabtoxin	b. vitorin	c. tentoxin	d. periconin
141.	Tabtoxin is produced b	ογ		
	a. Pseudomonas	b. Xanthomonas	c. Fusarium	d. Alternaria
142.	Tentoxin is produced b	ογ		
	a. Xanthomonas	b. Fusarium	c. Alternaria	d. Pseudomonas
143.	Victorin is produced by	Ý		
	a. Helminthosporium	b. Xanthomonas	c. Fusarium	d. Pseudomonas
144.	A fungicide applied to	the infected parts of a c	liseased plant is called	
	a. topical fungicide	b. local fungicide	c. systemic fungicide	d. specific fungicide
145.	The fungicide which is	s evenly distributed with	in the plant is called	
	a. local fungicide	b. systemic fungicide	c. topical fungicide	d. specific fungicide
146.	Which of the following	g is a common fungicide	named after a city in Fra	nce
	a. Bordeaux mixture	b. Paris mixtu	ire c. Ziram	d. Ferbam
147.	Which of the following	g type of members are n	ot found among fungi	
	a. autotrophs	b. saprophytes	c. parasites	d. symbionts
148.	Which is a common co	mponent in lichens and	mycorrhiza	
	-	e green alga	c. bacterium	d. fungus
149.		reproduction i		
	a. sexual, bacteria	b. asexual, ba		
	c. sexual, fungi	d. asexual, fur	ngi	

150.	Which of the following group of fungi has aseptate coenocytic mycelia				
	a. ascomycotina	b. basidiomyc	otina c. deuteromycotina	d. mastigomycotina	
151.	Which of the following	g is known as fun	gi imperfectii		
	a. zygomycotina	b. ascomycoti	na c. deuteromycotina	d. basidiomycotina	
152.	Which of the following	g is odd one			
	a. mushroom	b. bracket fung	gi c. puffballs	d. morels	
153.	We can not observe h	yphae in			
	a. <i>Albugo</i>	b. <i>Rhizopus</i>	c. Puccinia	d. Saccharomyces	
154.	Dikaryophase in some	fungi are formed	ł		
	a. just after fertilizatio	on by division of z	ygotic nucleus into two diploid	nuclei	
	b. plasmogamy takes place but karyogamy is delayed				
	c. some of the cells get their haploid nuclei divided into two				
	d. none				
155.	Which of the following	g represents dika	ryophase		
	a. n + n	b. 2n	c. 2n + 2n	d. n + 2n	
156.	The mycelium is coen	ocytic in			
	a. phycomycetes	b. ascomycete	s c. basidiomycetes	d. deuteromycetes	
157.	The mycelium is	and	in		
	i. branched, aseptate	e, phycomycetes			
	ii. branched, septate,	Ascomycetes			
	iii. branched, septate,	basidioomycetes	5		
	iv. branched, septate,	deuteromycetes			
	a. i, ii	b. ii, iii, iv	c. i, ii, iii	d. i, ii, iii, iv	
158.	Main component of co	ell wall of fungi is			
	a. cellulose	b. hemicellulos	se c. chitin	d. pectin	
159.	In Phycomycetes, the	zoospores and ap	planospores are produced	in	
	a. exogenously, spora	ngia	b. exogenously, conidia		
	c. endogenously, spor	angia	d. endogenously, conidia		
160.	Coprophilous fungi gro	ow on			
	a. bread	b. leather	c. wood	d. dung	

161.	Ascomycetes reproduce asexually by which are produced on special mycelial branches called	
	a. conidia, endogenously, conidiophores	
	b. conidia, exogenously, conidiophores	
	c. zoospores, endogenously, sporangiophores	
	d. zoospores, exogenously, sporangiophores	
162.	Which of the following structures does not germinate to form a mycelium	
	a. zoospore b. aplanospore c. conidium d. conidiophore	
163.	Ascospores are spores produced in structures called	
	a. sexual, endogenously, asci b. asexual, endogenously, asci	
	c. sexual, exogenously, asci d. asexual, exogenously, asci	
164.	Which of the following fungal classes is known as "imperfect fungi"	
	a. phycomycetes b. ascomycetes c. basidiomycetes d. deuteromycete	S
165.	Which of the following fungal classes is known as "sac fungi"	
	a. phycomycetes b. ascomycetes c. basidiomycetes d. deuteromycete	S
166.	Zygospore is the product of	
	a. fusion of two gametes b. fusion of two zoospores	
	c. fusion of two aplanospores c. meiosis of zygotic nucleus	
167.	, a member of is extensively used in biochemical and genetic studies	
	a. <i>Neurospora</i> , phycomycetes b. <i>Neurospora</i> , ascomycetes	
	c. <i>Neurospora</i> , basdioomycetes d. <i>Neurospora</i> , deuteromycetes	
168.	Fruiting bodies of ascomycetes are called	
	a. ascospores b. asci c. ascocarps d. ascogenous hyphae	
169.	Which of the following is a sac fungus	
	a. Albugo b. Puccinia c. Alternaria d. Neurospora	
170.	Which among the following is a parasite and belongs to basidiomycetes	
	a. Puccinia b. Synchytrium c. Albugo d. Mucor	
171.	Sex organs are absent but sexual reproduction takes place by plasmogamy in	
	a. phycomycetes b. ascomycetes c. basidiomycetes d. deuteromycete	S

172.	In basidiomycetes, karyogamy and meiosis take place in				
	a. basidiospore	b. basidiocarp	c. basidium	d. ascus	
173.	Which among the follo	owing is a smut fungus			
	a. Puccinia	b. <i>Ustilago</i>	c. Albugo	d. <i>Mucor</i>	
174.	Which among the follo	owing is a rust fungus			
	a. Puccinia	b. <i>Ustilago</i>	c. Albugo	d. Agaricus	
175.	Basidia in basidiomyce	etes are formed by			
	a. monokaryotic myce	lium b. dik	aryotic mycelium		
	c. haploid mycelium	d. dip	loid mycelium		
176.	In basidiomycetes, the on the basidia	e are product o	f reproduction a	nd produced	
	a. basidiospores, asexual, endogenously				
	b. basidiospores, asexual, exogenously				
	c. conidia, asexual, exogenously				
	d. basidiospores, sexu	ual, exogenously			
177.	Which among the follo	owing shows asexual rep	production only		
	a. phycomycetes	b. ascomycetes	c. basidiomycetes	d. deuteromycetes	
178.	Ascocarp with no spec	ial opening is called			
	a. cleisotothecium	b. apothecium	c.perithecium	d. pseudothecium	
179.	A dolipore septum is c	haracteristic feature of			
	a. phycomycetes	b. ascomycetes	c. basidiomycetes	d. deuteromycetes	
180.	Sac fungi are				
	a. ascomycotina	b. basidiomycotina	c. mastigomycotina	d. zygomycotina	
181.	Fungi lacking cross wa	lls in mycelium belong t	0		
	a. phycomycetes	b. ascomycetes	c. basidiomycetes	d. deuteromycetes	
182.	Imperfect fungi lack				
	a. hyphae b. se	xual reproduction	c. asexual reproduction	on d. spores	
183.	Fungi have all the usua	al cell organelles except			
	a. plastids b. nu	icleus c. mitochono	dria d. endoplasm	ic reticulum	

184.	Ascospores located in asc	i are found in		
	a. conidiocarp b	. sorocarp	c. ascocarp	dsporocarp
185.	Puccinia graminis tritici is			
	a. macrocyclic, heteroeci	ous	b. microcyclic, a	utoecious
	c. microcyclic, heteroecid	ous	d. macrocyclic, a	utoecious
186.	The term heteroecious m	eans		
	a. life cycle on two hosts		b. presence of he	terothallism
	c. presence of heterokary	ons	d. exhibition of di	planetism
187.	Passing of life cycle only o	on one host is called		
	a. heteroecious b	. autoecious	c. momoecious	d. Homoecious
188.	Clamp connections are ve	ery common in		
	a. mastigomycotina b	. Ascomycotina c.	basidiomycotina	d. deuteromycotina
189.	Which is not matched co	rectly		
	a. puff balls – Lycoperdo	n	b. bracket fungi	– polyporus
	c. toad stool – Amantia		c. smut fungi – P	Puccinia
190.	The fertile layer in the as	cocarp or basidiocarp	is called	
	a. trama b. hymei	nium c. sub	hymenium d	. paremchyma
191.	Somatogamy is the			
	a. fusion of gametes		b. fusion of veget	tative cells
	c. contact between two g	ametengia	d. copulation bet	ween two gametengia
192.	Synchytrium has about			
	a. 100 species b	. 200 species	c. 300 species	d. 400 species
193.	Species of Synchytrium a	ге		
	a. obligate parasites	b. facultative	parasites	
	c. obligate saprophytes	d. facultative	saprophytes	
194.	What is true about Synch	ytrium		
	a. it is endobiotic	b. it is holoca	rpic c.	. both d. none

195.	Black wart disease of potato is caused by			
	a. Synchytrium fulgens	b. Synchytrium	n aureum	
	c. Synchytrium austral	d. Synchytrium	n endobioticum	
196.	Most common species of	f Synchytrium is		
	a. Synchytrium fulgens	b. Synchytrium	n aureum	
	c. Synchytrium austral	d. Synchytrium	n endobioticum	
197.	Who worked out the life	history of Synchytrium	n endobioticum	
	a. Kurtis k	b. Butler	c. Smith d. Bes	ssey
198.	The body of Synchytrium	n is		
	a. unicellular b. septa	ite mycelium c. coer	nocytic mycelium	d. multicellular
199.	Prosorus stage is seen du	uring asexual reproduct	tion of	
	a. <i>Albugo</i> b. <i>Puccii</i>	nia c. Alte	rnaria d. Syr	nchytrium
200.	Zoospore of Synchytrium	ı is		
	a. uniflagellate	b. biflagellate	c. quadriflagellate	d. none
201.	In the life cycle of Synchy	<i>ytrium,</i> the zoospore af	ter infecting the host d	evelops into
	a. summer spore	b. winter spore	c. late spore	d. early spore
202.	In the life cycle of Synchy	<i>ytrium,</i> the zygote deve	elops into	
	a. summer spore	b. winter spore	c. late spore	d. early spore
203.	Synchytrium belongs to			
	a. mastigomycotina k	b. ascomycotina	c. basidiomycotina	d. deuteromycotina
204.	Albugo belongs to			
	a. mastigomycotina k	b. ascomycotina	c. basidiomycotina	d. deuteromycotina
205.	Species of Albugo are			
	a. obligate parasites	b. facultative p	parasites	
	c. obligate saprophytes	d. facultative s	aprophytes	
206.	Albugo causes which of t	the following disease		
	a. red rust	b. black rust	c. white rust	d. white smut

207.	White rust of crucifers is caused by				
	a. Albugo candida	b. Albugo platen	isis c. A	Albugo bilti	d. Albugo evolvuli
208.	The mycelium of Albu	до			
	a. branched	b. aseptate	c. c	coenocytic	d. all
209.	Hyphae of <i>Albugo</i> in tl	ne host is			
	a. intercellular witho	ut haustoria	b. i	intercellular with ha	ustoria
	c. intracellular withou	t haustoria	d. i	intracellular with ha	ustoria
210.	Haustoria of Albugo is				
	a. knob like	b. finger like	c. b	pranched	d. peltate
211.	Zoospore of Albugo is				
	a. kidney shaped	b. globose	с. р	pear shaped	d. spindle shaped
212.	Zoospore of Albugo ha	IS			
	a. two equal flagella	ł	o. two uneo	qual flagella	
	c. one flagellum	C	d. three flag	gella	
213.	What is true about the	e zoospore of Albug	ро		
	a. it has two equal fla	gella, both of tinsel	type		
	b. it has two equal fla	gella, both of whip	lash type		
	c. it has two unequal	flagella, the shorte	r being tinse	el type and the long	er whiplash type
	d. it has two unequal	flagella, the shorte	r being whi	iplash type and the	longer tinsel type
214.	The sporangia in Albug	go are			
	a. produced singly on	the tip of normal h	iyphae		
	b. produced in chains	on the tip of norm	al hyphae		
	c. produced singly on	the tip of sporangi	ophores		

d. produced in chain on the tip of sporangiophore

215. What is true about *Albugo*

	a. sexual reproduction is oogamous				
	b. fertilization tube is formed during fertilization				
	c. oospore is for	med as a result of sexual	reproduction		
	d. all				
216.	Puccinia belongs to				
	a. phycomycetes	b. ascomycetes	c. basidiomycetes	d. deuteromycetes	
217.	Puccinia is commonly	known as			
	a. rust b. sm	ut c. bun	t d. mildew		
218.	Puccinia belongs to th	e order			
	a. uredinales	b. ustilaginales	c. eurotiales	d. plectascales	
219.	Species of Puccinia are	2			
	a. obligate parasites b. facultative parasites				
	c. obligate saprophytes d. facultative saprophytes				
220.	Number of species inc	luded in <i>Puccinia</i> are abo	out		
	a. 300 b. 30	00 c. 400	d. 4000		
221.	Which species of Pucc	inia causes black stem ru	ist of wheat		
	a. P. graminis tritici	b. P. recondita	c. P. striiformis	d. P. asparagi	
222.	Which species of Pucc	inia causes yellow rust o	f wheat		
	a. P. graminis tritici	b. P. recondita	c. P. striiformis	d. P. asparagi	
223.	Which species of Pucc	inia causes orange or bro	own rust of wheat		
	a. P. graminis tritici	b. P. recondita	c. P. striiformis	d. P. asparagi	
224.	Puccinia graminis triti	<i>ci</i> is			
	i. autoecious	ii. heteroeciousiii. ma	acrocyclic iv. m	icrocyclic	
	a. i & iii	b. i & iv	c. ii & iii	d. ii & iv	
225.	Primary host of Puccir	ia graminis tritici is			
	a. rice	b. maize	c. barberry	d. wheat	

	a. wheat	b. barberry	c. grass	d. parthenium	
227.	What is true about Puo	ccinia graminis tritici			
	i. dikaryotic myceliur	n is present on wheat			
	ii. dikaryotic myceliur	n is present on barberry			
	iii. monokaryotic myce	elium is present on barb	erry		
	iv. monokaryotic myce	elium is present on whea	ət		
	a. i & iii	b. ii & iv	c. i & ii	d. iii & iv	
228.	Which of the following	stages are present in th	ne life cycle of Puccinia g	raminis tritici	
	i. uredineal ii. teli	al iii. basidial	iv. pycnidial v. aec	ial	
	a. iⅈ	b. i, ii, & iii	c. i, ii, iii & iv	d. i, ii, iii,iv & v	
229.	Which of the following	stages of Puccinia gram	ninis tritici are found on v	wheat	
	i. uredineal ii. teli	al iii. basidial	iv. pycnidial v. aec	ial	
	a. iⅈ	b. i, ii, & iii	c. i, ii, iii & iv	d. i, ii, iii,iv & v	
230.	Which of the following	stages of Puccinia gram	iinis tritici are found on b	parberry	
	i. uredineal ii. teli	al iii. basidial	iv. pycnidial v. aec	ial	
	a. iⅈ	b. i, ii, & iii	c. i, ii, iii & iv	d. iv & v	
231.	Which of the following	stages of Puccinia gram	<i>ninis tritici</i> is not found o	n wheat and barberry	
	a. uredineal	b. telial	c. basidial	d. pycnidial	
232.	Binucleate spores in th	ne life cycle of <i>Puccinia g</i>	raminis tritici are		
	a. uredospore, teleut	ospore, aeciospores			
	b. uredospore, basidiospore, pycniospore				
	c. uredospore, basidic	ospore, pycniospore			
	d. basidiospore, pycni	ospore			

Secondary host of Puccinia graminis tritici is

226.

233. Uninucleate spores in the life cycle of <i>Puccinia graminis tritici</i> are					
	a. uredospore, teleu	utospore, aeciospores			
	b. uredospore, basic	liospore, pycniospore			
	c. uredospore, basid	iospore, pycniospore			
	d. basidiospore, pyc	niospore			
234.	Spores of Puccinia gr	<i>caminis tritic</i> i that germin	ate on wheat		
	a. uredospore, aecio	ospores			
	b. uredospore, teleu	tospore			
	c. uredospore, basid	iospore, pycniospore			
	d. basidiospore, pycniospore				
235.	Spore of Puccinia gro	aminis tritici that germina	tes on barberry		
	a. pycniospore	b. basidiospore	c. uredospore	d. teleutospore	
236.	Karyogamy in Puccin	<i>ia graminis tritici</i> takes pl	ace in		
	a. teleutospore	b. uredospore	c. aeciospores	d. basidiospore	
237.	Basidial stage in Pucc	cinia graminis tritici deve	lops from		
	a. pycniospore	b. basidiospore	c. uredospore	d. teleutospores	
238.	In Puccinia graminis	<i>tritici</i> flexuous hyphae ca	n be observed in		
	a. uredinium	b. telium	c. pycnidium	d. aecium	
239.	Which spore is used	for dikaryotization in Puc	cinia graminis tritici		
	a. basidispore	b. pycniospore	c. aeciospores	d. uredospore	
240.	Two-celled spore in <i>I</i>	Puccinia graminis tritici is			
	a. uredospore	b. aeciospores	c. teleutospore	d. basidiospore	
241.	Correct sequence of	stages in the life cycle of	Puccinia graminis tritici is		
	a. uredineal, telial,	basidial, pycnidial, aecia	al		
	b. telial, uredineal,	basidial, pycnidial, aecia	I		
	c. telial, uredineal, k	pasidial, aecial, pycnidial			

d. basidial, uredineal, pycnidial, aecial, telial

242. *Neurospora* belongs to the class a. phycomycetes b. ascomycetes c. basidiomycetes d. deuteromycetes 243. *Neurospora* is commonly known as a. red or pink bread mould b. blue bread mould d. all c. green mould 244. Which among the following is known as Drosophila of the plant kingdom a. Alternaria b. Albugo c. Fusarium d. Neurospora 245. *Neurospora* is also called a. bakery mould b. brewing mould c. summer mould d. winter mould 246. Mycelium of Neurospora is a. septate having multinucleate cells b. aseptate and coenocytic c. septate with uninucleate cells d. septate, pigmented having multinucleate cells 247. Asexual reproduction in Neurospora takes place by a. uniflagellate zoospore b. biflagellate zoospore d. conidia c. aplanospore 248. What is true about Neurospora a. it produces asexually by conidia b. it produces two types of conidia c. the conidia are borne on conidiophores d. all 249. What is true about Neurospora a. macroconidia are large and multinucleate b. microconidia are small and uninucleate c. both macroconidia and microconidia germinate to form new mycelia d. all

250. In Neurospora

	a. male gametangium is not formed				
	b. male nucleus is provided by the conidia				
	c. female gametangiu	m is the ascogonium			
	d. all				
251.	The ascocarp of Neuro	spora is			
	a. cleistothecium	b. apothecium	c. perithecium	d. stroma	
252.	Alternaria belongs to t	he class			
	a. phycomycetes	b. ascomycetes	c. basidiomycetes	d. deuteromycetes	
253.	Which of the following	diseases is caused by A	lternaria		
	a. late blight of potate	b. early blight	of potato		
	c. wart of potato	d. rust of whe	at		
254.	What is true about Alt	ernaria			
	a. mycelium is septate	e and branched			
	b. cells are usually multinucleate				
	c. sexual stage is abse	nt			
	d. all				
255.	Asexual reproduction	in <i>Alternaria</i> takes place	by		
	a. zoospore	b. ascospore	c. basidiospore	d. conidia	
256.	The conidia of Alterna	<i>ria</i> are			
	a. unicellular	b. multicellular	c. beaked	d. b&c	
257.	Which among the follo	owing is a sac fungus			
	a. Neurospora	b. Alternaria	c. Puccinia	d. <i>Albugo</i>	
258.	Which among the follo	owing is a club fungus			
	a. Neurospora	b. Alternaria	c. Puccinia	d. <i>Albugo</i>	
259.	Which among the follo	owing belongs to fungi in	nperfectii		
	a. Neurospora	b. Alternaria	c. Puccinia	d. <i>Albugo</i>	

260.	Which among the following has aseptate and coenocytic mycelium			
	a. Neurospora	b. Alternaria	c. Puccinia	d. <i>Albugo</i>
261.	Zoospore can be seen	in		
	a. Neurospora	b. Alternaria	c. Puccinia	d. <i>Albugo</i>
262.	Late blight of potato is	s caused by		
	a. Phytophthora	b. <i>Albugo</i>	c. Puccinia	d. Alternaria
263	Causal organism of lat	e blight of potato belon	gs to	
	a. phycomycetes	b. ascomycetes	c. basidiomycetes	d. deuteromycetes
264.	Species responsible fo	r late blight of potato is		
	a. Albugo candida b. Puccinia graminis			
	c. Alternaria solani	d. <i>Ph</i>	ytophthora infestans	
265.	Main source of primary infection of late blight of potato is supposed to be			
	a. infected tubers	b. infected leaves	c. resting oospores ir	the soil d. none
266.	In the causal organism	of late blight of potato		
	a. mycelium is asepta	te and coenocytic		
	b. mycelium is both in	tercellular and intracell	ular	
	c. sporangiophores cc	me out of the host ston	nata and bear sporangia	at the tips
	d. all			
267.	Loose smut of wheat i	s caused by a species of		
	a. Ustilago	b. <i>Puccinia</i>	c. Albugo	d. Synchytrium
268.	Causal organism of loc	ose smut of wheat is		
	a. Ustilago maydis	b. Ustilago tritici	c. Ustilago avenae	d. Puccinia graminis
269.	Causal organism of loc	ose smut of wheat belon	gs to the class	
	a. phycomycetes	b. ascomycetes	c. basidiomycetes	d. deuteromycetes
270.	What is true about Us	tilago tritici		
	a. it is an internal para	asite	b. it has dika	ryotic mycelium
	c. the mycelium is inte	ercellular	d. all	

271.	271. In loose smut of wheat, smut spores are formed in the						
	a. leaves	b. stems	c. roots	d. ovaries			
272.	2. Smut spores are also called						
	a. brand spores	b. teliospores	c. both	d. none			
273.	73. The main symptom of loose smut of wheat is						
	a. the ears bear loose, black, powdery mass instead of flower						
	b. the leaves are blighted						
274. Smut spores formed in loose smut of wheat are							
	a. unicellular, unicnucleate b. unicellular, binucleate						
	c. two-celled, each cell	l uninucleae d. 1	two-celled, each ce	ll binucleate			
275.	75. What is true about loose smut of wheat						
	a. it is a systemic disease						
	b. basidiospores are not formed						
	d. all						
276. Loose smut of wheat can be controlled by							
	a. hot water treatment of wheat grains before sowing						
	b. growing resistant varieties						
	c. use of systemic fungicides						
	d. all						
277.	Red rot of sugarcane is	s caused by a species	of				
	a. <i>Ustilago</i>	b. <i>Puccinia</i>	c. Alternaria	d.	Colletotrichum		
278.	Causal organism of red rot of sugarcane is						
	a. Ustilago maydis		b. Alternaria tenuis				
	c. Colletotrichum falcatum		d. Colletotrichum capsici				

	a. phycomycetes	b. ascomycetes	c. basidiomycetes	d. deuteromycetes			
280.	What is true about red	rot of sugarcane					
	a. earliest symptoms a	re the yellowing and dro	ooping of the upper leave	25			
	b. at advanced stage o	f disease blood red lesio	ns develop on the mid ri	bs of leaves			
	c. the lesions become	covered with powdery m	nasses				
	d. all						
281.	What is true about Coll	etotrichum falcatum					
	a. mycelium is both intercellular and intracellular						
	b. the conidiophores a	re unseptate					
	d. all						
282.	Condia of Colletotrichu	m falcatum is					
	a. unicellular	b. sickle-shaped	c. hyaline	d. all			
283.	Red rot of sugarcane ca	an be controlled by					
	a. collecting and burning of sugarcane trash in the field						
	b. use of healthy seeds and crop rotationc. growing resistant varieties						
	d. all						
284.	Blast of rice is caused b	by a species of					
	a. <i>Ustilago</i>	b. Puccinia	c. Pyricularia	d. Colletotrichum			
285.	Causal organism of blas	st of rice is					
	a. Ustilago maydis		b. Alternaria tenuis				

Causal organism of red rot of sugarcane belongs to the class

c. Pyricularia angulata d. Pyricularia oryzae

286. Causal organism of blast of rice belongs to the class

279.

a. phycomycetes b. ascomycetes c. basidiomycetes d. deuteromycetes

- 287. Mycelium of *Pyricularia oryzae* is
 - a. intercellular b. sepatate c. multinucleate d. all
- 288. In blast of rice
 - a. the disease produces characteristic leaf spot symptoms in the form of lesions
 - b. conidiophores emerge through stomata bearing the conidia which are usually pyriform and 2-septate

c. Pythium

b. Alternaria tenuis

d. Melampsora lini

b. autoecious & macrocyclic

d. heteroecious & macrocylic

d. Melampsora

c. several toxins including piricularin and pyriculol are formed

d. all

- 289. Blast of rice can be controlled by
 - a. use of resistant varieties
 - b. spray of copper fungicides
 - c. use of antibiotics
 - d. all
- 290. Rust of linseed is caused by a species of
 - a. Puccinia b. Albugo
- 291. Causal organism of rust of linseed is
 - a. Ustilago maydis
 - c. Colletotrichum falcatum
- 292. Melampsora lini is
 - autoecious & microcyclic
 - c. heteroecious & microcyclic
- 293. Rust of linseed can be controlled by
 - a. use of resistant varieties
 - b. spray of fungicides
 - c. field sanitation
 - d. all

	e	5			
	a. Blakeslee	b. Pontecorvo	c. Roper	d. Buller	
295.	Heterothallism in fungi was first of all discovered in				
	a. Rhizopus	b. Aspergillus	c. Penicillium	d. Alternaria	
296.	In Rhizopus the hormone involved in heterothallism is				
	a. trisporic acid	b. fusaric acid	c. mallic acid	d. pyruvic acid	
297.	Irish famine was due to)			
	a. early blight of potato		b. late blight of potato		
	c. leaf curl of potato		d. mosaic of potato		
298.	Parasexuality in fungi	was discovered by			
	a. Blakeslee	b. Pontecorvo & Rope	r c. de Bary	d. Buller	
299.	Cup shaped ascocarp i	s known as			
	a. cleistothecium	b. perithecium	c. apothecium	d. stroma	
300.	Heterothallic fungi ma	y be			
	a. bipolar heterothall	ic	b. tetrapolar heteroth	nallic	
	c. secondary heteroth	nallic	d. all		

294.

Heterothallism in fungi was discovered by